Source code for kpler.sdk.resources.refineries.crude_runs

from datetime import date
from enum import Enum
from typing import List, Optional

from pandas import DataFrame

from kpler.sdk import Platform
from kpler.sdk.client import KplerClient
from kpler.sdk.configuration import Configuration
from kpler.sdk.helpers import (
    process_date_parameter,
    process_enum_parameter,
    process_enum_parameters,
    process_list_parameter,
)


[docs]class CrudeRuns(KplerClient): """ The Runs endpoint returns the aggregated runs for a point of interest (installation/zone) on a daily, weekly, weekly EIA (for US), monthly and yearly basis. """ RESOURCE_NAME = "refineries/crude-runs" AVAILABLE_PLATFORMS = [Platform.Liquids] def __init__(self, configuration: Configuration, column_ids: bool = True, log_level=None): super().__init__(configuration, self.AVAILABLE_PLATFORMS, column_ids, log_level)
[docs] def get_columns(self) -> DataFrame: """ This endpoint returns a recent and updated list of all columns available for the endpoint refineries crude-runs. Examples: >>> from kpler.sdk.resources.refineries.crude_runs import CrudeRuns ... crude_runs_client = CrudeRuns(config) ... crude_runs_client.get_columns() .. csv-table:: :header: "id","name","description","deprecated","type" "date","Date (timestamp)","Date, within the start_date and end_date. Data is provided with ascending order on date. Format YYYY-MM-DD.","False","string" "zones","Zones","List of zones specified in the parameter zones.","False","list of string" "installations","Installations","List of installations specified in the parameter installations.","False","list of string" "splitValue","Split Value","Name of the bucket corresponding to the specified split. EG Americas or Asia for split by Continent.","False","string" "metric","Metric","Corresponding to the endpoint.","False","string" "...","..." """ return self._get_columns_for_resource(self.RESOURCE_NAME)
[docs] def get( self, players: Optional[List[str]] = None, installations: Optional[List[str]] = None, zones: Optional[List[str]] = None, start_date: Optional[date] = None, end_date: Optional[date] = None, products: Optional[List[Enum]] = None, unit: Optional[Enum] = None, granularity: Optional[Enum] = None, split: Optional[Enum] = None, ) -> DataFrame: """ Args: players: Optional[str] Names of players installations: Optional[List[str]] Names of installations zones: Optional[List[str]] Names of countries/geographical zones start_date: Optional[date] Start of the period (YYYY-MM-DD), must be after 2017-01-01 end_date: Optional[date] End of the period (YYYY-MM-DD), maximum of 7 days from today products: Optional[List[Enum]] ``RunsQualities`` unit: Optional[Enum] ``RunsUnit`` granularity: Optional[Enum] ``RunsGranularity`` split: Optional[Enum] ``RunsSplit`` Examples: >>> from datetime import date ... from kpler.sdk.resources.refineries.crude_runs import CrudeRuns ... from kpler.sdk import RunsSplit, RunsGranularity, RunsQualities, RunsUnit ... crude_runs_client = CrudeRuns(config) ... crude_runs_client.get( ... installations=["xxxx"], ... zones=["United States"], ... start_date=date(2023, 4, 1), ... end_date=date(2023, 7, 31), ... player=["xxx"], ... products=[RunsQualities.All], ... unit=RunsUnit.KBD, ... granularity=RunsGranularity.Monthly, ... split=RunsSplit.Total, ... ) .. csv-table:: :header: "Date","Zones","Installations","Split Value","Metric","Value","Unit" "2023-04-01","United States",,"Total","Runs","79644.0","kbd" "2023-05-01","United States",,"Total","Runs","79417.0","kbd" "2023-06-01","United States",,"Total","Runs","79540.0","kbd" "2023-07-01","United States",,"Total","Runs","81059.0","kbd" """ query_parameters = { "players": process_list_parameter(players), "installations": process_list_parameter(installations), "zones": process_list_parameter(zones), "startDate": process_date_parameter(start_date), "endDate": process_date_parameter(end_date), "products": process_enum_parameters(products, to_lower_case=False), "split": process_enum_parameter(split, to_lower_case=False), "granularity": process_enum_parameter(granularity, to_lower_case=False), "unit": process_enum_parameter(unit, to_lower_case=False), } return self._get_dataframe(self.RESOURCE_NAME, query_parameters)