Source code for kpler.sdk.resources.refineries.utilization_rates

from datetime import date
from enum import Enum
from typing import List, Optional

from pandas import DataFrame

from kpler.sdk import Platform
from kpler.sdk.client import KplerClient
from kpler.sdk.configuration import Configuration
from kpler.sdk.helpers import (
    process_date_parameter,
    process_enum_parameter,
    process_list_parameter,
)


[docs]class UtilizationRates(KplerClient): """ The UtilizationRates endpoint returns the utilization rate for a point of interest (installation/zone) on a daily, weekly, weekly EIA (for US), monthly and yearly basis. This is formulated as runs/operational capacity. """ RESOURCE_NAME = "refineries/utilization-rates" AVAILABLE_PLATFORMS = [Platform.Liquids] def __init__(self, configuration: Configuration, column_ids: bool = True, log_level=None): super().__init__(configuration, self.AVAILABLE_PLATFORMS, column_ids, log_level)
[docs] def get_columns(self) -> DataFrame: """ This endpoint returns a recent and updated list of all columns available for the endpoint refineries utilization-rates. Examples: >>> from kpler.sdk.resources.refineries.utilization_rates import UtilizationRates ... utilization_rates_client = UtilizationRates(config) ... utilization_rates_client.get_columns() .. csv-table:: :header: "id","name","description","deprecated","type" "date","Date (timestamp)","Date, within the start_date and end_date. Data is provided with ascending order on date. Format YYYY-MM-DD.","False","string" "zones","Zones","List of zones specified in the parameter zones.","False","list of string" "installations","Installations","List of installations specified in the parameter installations.","False","list of string" "splitValue","Split Value","Name of the bucket corresponding to the specified split. EG Americas or Asia for split by Continent.","False","string" "metric","Metric","Corresponding to the endpoint.","False","string" "...","..." """ return self._get_columns_for_resource(self.RESOURCE_NAME)
[docs] def get( self, players: Optional[List[str]] = None, installations: Optional[List[str]] = None, zones: Optional[List[str]] = None, start_date: Optional[date] = None, end_date: Optional[date] = None, products: Optional[List[Enum]] = None, unit: Optional[Enum] = None, granularity: Optional[Enum] = None, split: Optional[Enum] = None, ) -> DataFrame: """ Args: players: Optional[str] Names of players installations: Optional[List[str]] Names of installations zones: Optional[List[str]] Names of countries/geographical zones start_date: Optional[date] Start of the period (YYYY-MM-DD), must be after 2017-01-01 end_date: Optional[date] End of the period (YYYY-MM-DD), maximum of 7 days from today granularity: Optional[Enum] ``UtilizationGranularity`` split: Optional[Enum] ``UtilizationSplit`` Examples: >>> from datetime import date ... from kpler.sdk.resources.refineries.utilization_rates import UtilizationRates ... from kpler.sdk import UtilizationGranularity, UtilizationSplit ... utilization_rates_client = UtilizationRates(config) ... utilization_rates_client.get( ... installations=["xxxx"], ... zones=["United States"], ... start_date=date(2023, 4, 1), ... end_date=date(2023, 7, 31), ... player=["xxx"], ... granularity=UtilizationGranularity.Monthly, ... split=UtilizationSplit.Total, ... ) .. csv-table:: :header: "Date","Zones","Installations","Split Value","Metric","Value","Unit" "2023-04-01","United States",,"Total","Utilization Rate","88.0","%" "2023-05-01","United States",,"Total","Utilization Rate","89.0","%" "2023-06-01","United States",,"Total","Utilization Rate","100.0","%" "2023-07-01","United States",,"Total","Utilization Rate","91.0","%" """ query_parameters = { "players": process_list_parameter(players), "installations": process_list_parameter(installations), "zones": process_list_parameter(zones), "startDate": process_date_parameter(start_date), "endDate": process_date_parameter(end_date), "split": process_enum_parameter(split, to_lower_case=False), "granularity": process_enum_parameter(granularity, to_lower_case=False), } return self._get_dataframe(self.RESOURCE_NAME, query_parameters)